The economic damage spider mites can cause varies from year to year and depends on several biotic and abiotic factors. When deciding how best to manage spider mite infestations in a corn crop, consider biological, cultural, and chemical control methods, individually or in combination.
Biological and Cultural Control
In some years, fields may not have to be treated, as beneficial predatory insects keep the mite populations below economic injury levels. Beneficial predatory insects include the Stethorus lady beetles, minute pirate bugs, lacewing larvae, and thrips. In addition to predatory insects, Neozygites floridana, a naturally occurring fungus, is a common pathogen that attacks spider mites and can be beneficial in controlling population numbers. Daily temperatures below 85°F with high relative humidity create favorable conditions for fungal growth on the spider mites.
Hot and dry climates tend to have higher levels of spider mite infestations as natural enemies cannot keep up with increasing spider mite numbers, and the fungal pathogen Neozygites floridana is not as active. Avoiding drought stress with properly applied irrigations is a key cultural control component. However, once spider mite populations are established, irrigation will not decrease the density of the population. Other cultural components to consider are later plantings or planting a fuller season hybrid if these options are feasible.
Chemical Control with Miticides
Biological and cultural control practices can be beneficial but often unreliable. Many growers rely heavily on chemical control. While chemical control can be effective, this method does not come without problems or concerns. The TSM is more tolerant to miticides and is harder to control than the BGM. Additionally, spider mites colonize on the bottom side of the leaves leading to difficulties in application coverage. It is recommended to use three or more gallons of water per acre to increase effectiveness. Aerial applications are most effective. More scouting and secondary treatments can usually be expected, as it is difficult to kill eggs with a miticide application. Re-infestation will likely occur within seven to ten days after initial application.